a2 United States Patent

Cai et al.

US009485317B2

US 9,485,317 B2
Nov. 1, 2016

(10) Patent No.:
45) Date of Patent:

(54) METHOD AND SYSTEM FOR MONITORING
EXECUTION OF USER REQUEST IN
DISTRIBUTED SYSTEM

(71) Applicant: Alibaba Group Holding Limited,
George Town (KY)

(72) Inventors: Hua Cai, Hangzhou (CN); Qi Zhou,
Hangzhou (CN); Tingtao Sun,
Hangzhou (CN)

(73) Assignee: Alibaba Group Holding Limited,
Cayman Islands (KY)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 423 days.

(21) Appl. No.: 14/023,014

(22) Filed: Sep. 10, 2013
(65) Prior Publication Data
US 2014/0082184 Al Mar. 20, 2014
(30) Foreign Application Priority Data
Sep. 14,2012 (CN) e 2012 1 0342909
(51) Imt.CL
GO6F 15/173 (2006.01)
HO4L 29/08 (2006.01)
(Continued)
(52) US. CL
CPCcccue. HO4L 67/22 (2013.01); GO6F 11/006

(2013.01); GO6F 11/3006 (2013.01); GO6F
113072 (2013.01); GOGF 11/3075 (2013.01);
GO6F 11/3476 (2013.01); GO6F 2201/805
(2013.01); GOG6F 2201/835 (2013.01); HO4L
43/00 (2013.01); HO4L 67/10 (2013.01)
(58) Field of Classification Search
CPC ... HO4L 67/22; HO4L 43/00; GOGF 11/3072;
GO6F 11/3476; GO6F 11/3075; GO6F
11/3006; GO6F 67/10; GOG6F 2201/835;
GOG6F 2201/805

USPC ottt 709/224
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2/2007 Satomi et al.
3/2007 Cota-Robles et al.

(Continued)

7,185,089 B2
7,191,440 B2

FOREIGN PATENT DOCUMENTS

EP 1341089 9/2003
JP 2009064124 3/2009
JP 2010118072 5/2010

OTHER PUBLICATIONS

T. Parsons et al.,“Non-intrusive end-to-end runtime path tracing for
J2EE systems”, IEE Proc.-Softw., vol. 153, No. 4, Aug. 2006.*

(Continued)

Primary Examiner — Viet Vu
Assistant Examiner — Herman Belcher

(74) Attorney, Agent, or Firm — Van Pelt, Yi & James
LLP

(57) ABSTRACT

Embodiments of the present application relate to a method,
a system and a computer program product for monitoring
execution of a user request on a distributed system. A
method for monitoring execution of user requests on a
distributed system is provided. The method includes sam-
pling a user request received by a plurality of servers,
generating an identifier corresponding to the user request
sampled by the plurality of servers, injecting tracking inter-
faces in advance into processes executed by the plurality of
servers, determining whether the current process contain the
identifier corresponding to the user request, in the event that
the current process contains the identifier corresponding to
the user request when the process has executed the tracking
interface, recording information corresponding to the iden-
tifier relating to the function indicated by the tracking
interface and generating a log, and individually collecting
the generated log according to the corresponding identifier.

10 Claims, 9 Drawing Sheets

900~
920
Client
930
Network
910 910
Server Server

US 9,485,317 B2

Page 2
(51) Int. C1. 2005/0203952 Al* 9/2005 Deilyc........ GO6F 17/30902
GO6F 11/30 (2006.0]) 2007/0011330 Al 1/2007 Dinker et al.
GO6F 11/34 (2006.01) 2013/0097613 Al 4/2013 Shin et al.
GO6F 11/00 (2006.01)
HO4L 12/26 (2006.01) OTHER PUBLICATIONS
(56) References Cited Chen, Mike Y., et al. “Pinpoint: Problem determination in large,

U.S. PATENT DOCUMENTS

8,321,840 B2

11/2012 Nagarajan et al.
2004/0267906 Al* 12/2004 Truty

dynamic Internet services.” Dependable Systems and Networks,
2002. DSN 2002. Proceedings. International Conference on. IEEE,
2002.

GO6F 17/30902

709/219 * cited by examiner

U.S. Patent Nov. 1, 2016 Sheet 1 of 9 US 9,485,317 B2

110~ Sample User Request Received by
Plurality of Servers in Distributed System

Y

120~ Generate ldentifier Corresponding to User
Request Sampled by Plurality of Servers

Y

130 Inject Tracking Interfaces in Advance into
N Processes Executed by Plurality of Servers
in Distributed System

140

Determine
Whether Current Process
Contains Identifier Corresponding

to User Request
?

150 Record Information Corresponding to
N Identifier Relating to Function Indicated
by Tracking Interface and Generate Log

Y

160~/ Individually Collect Generated Log Based
on Corresponding ldentifier

FIG. 1

U.S. Patent Nov. 1, 2016 Sheet 2 of 9 US 9,485,317 B2

[2011-08-0116:31:31,690272) [DEBUG] [15330] [Example . cpp:117] TRACE 1D 001 FUNC :FunctionA start
[2011-08-0116:31:31, 832724) [DEBUG] [15330] [Example. cpp:117] TRACE ID_001 FUNC :FunctionB start
[2011-08-0116:31:32.193131) [DEBUG] [15330] [. Example. cpp:122] TRACE ID 001 FUNG :FunctionB end
20110801 16:31:32. 200272] [DEBUG] [15330] [. /Example. cop:117) TRACE D ;001 FUNG_FunctionC start
20110801 16:31:33. 760278] [DEBUG] [15330] [. Example . cpp:122] TRACE ID ;001 FUNG :FunctionC end
[2011-08-01 16:31:33. 991376] [DEBUG] [15330] [Example. cop:122] TRACE 1D 001 FUNC :FunctionA start

FIG. 2

U.S. Patent Nov. 1, 2016 Sheet 3 of 9 US 9,485,317 B2

300\‘

3107 Classify Collected Logs Based on Different Identifiers

y

320~ Individually Classify Logs Having Same Identifier
Based on Different Processes

\d
Individually Merge Logs Having Same Identifier and
Same Process Based on
Function and Beginning and End Times

330~_

\ 4

340~ Combine Process-Spanning Logs Having Same
|dentifier Based on Time Sequence

A 4

350~ Analyze Collected Logs Based on Specific Needs
and Output Analysis Results

FIG. 3

U.S. Patent

Nov. 1, 2016 Sheet 4 of 9

US 9,485,317 B2

[MBoxServer:.GetMail] style:2

Style Count Ratio Avg(ms)
A 1790 99.77% 7
B 4 0.22% 16

Compare||

M
M

FIG. 4

U.S. Patent Nov. 1, 2016 Sheet 5 of 9 US 9,485,317 B2

502~ 504~
fl 1 fl 1
2| [MBoxServer.. GetMail] 2| [MBoxServer:: GetMail
3| -[ClientTableProxy::Read] 3|-[ClientTableProxy::Read]
4| -—[SendSyncRequest::SendSyncRequest] 4{ - [SendSyncRequest::SendSyncRequesf]
b|----[SqlStorageHelper.:HandleRequest] b|---[SqlStorageHelper.:HandleRequest]
B[- [SqlHelperService::OnReadRow] B -~ [SalHelperService::OnReadRow]
7|-[ClientTableProxy::Read] 7|-[ClientTableProxy::Read]
8| —-[SendSyncRequest::SenaSyncRequest] 8---[SendSyncRequest::SendSyncRequest]
9| -----[SqlStorageHelper::HandleRequest] 9|----[SqlStorageHelper::HandleRequest]
10} -+ [SqlHelperService::OnReadRow] 10] -+ [SqlHelperService::OnReadRow]
{ I [YouchaoFile::ReadPangu]
Legends
Colors || Links
Added ||(flirst change
Changed[(n)ext change
Deleted || (tlop

FIG. 5

U.S. Patent Nov. 1, 2016 Sheet 6 of 9 US 9,485,317 B2

Function Name Max{us) Min(us) Avglus) Ratio
[MBoxServer;: GetMall 212089 3600 6999 EmE00%
- [ClientTableProxy::Read] 22802 1072 2410 E===3Y%

- [SendSyncRequest::SendSyncRequest] 22570 954 283 E333Y
------ [SqiStorageHelper: HandleRequest] %43 252 522 @7%
-------- [SqlHelperService::OnReadRow] 557 67 74 12%
~[ClientTableProxy::Read] 204075 971 2409 E=334%
--[SendSyncRequest::SendSyncRequest] 203877 8% 218 E=333%
------ [SqiStorageHelper: HandleRequest] 1752 346 702 @10%
-—[SqlHelperService::OnReadRow] 965 101 B0 B5Y%

FIG. 6

U.S. Patent Nov. 1, 2016 Sheet 7 of 9 US 9,485,317 B2

r03605006.yhaliyun.com 7
1021003 yh.aliyun com =2
@ 102k02008.yh.alyun.com £ 479
'S r02h05010,yh,a|!yun,com—5]
& 103605002 yn.aliyun.com =
= 102n08006.4h.allyun.com = SRR)
r02k02004.4h allyun com = , . 2T
102402003 yh.allun com | TR TR T T T S e T
| | | | | | | |
0 5 100 150 200 250 300 3/0 400 450 500
Hit Count

FIG. 7

U.S. Patent

Nov. 1, 2016

Sheet 8 of 9

US 9,485,317 B2

Sampling Module

y

Identifier Generating Module

A

y

Tracking Interface-Injecting Module

A

y

Determining Module

\

y

Generating Module

\

y

Log Collecting Module

A

y

Log Analysis Module

FIG. 8

U.S. Patent Nov. 1, 2016 Sheet 9 of 9 US 9,485,317 B2

900\‘
920
Client
930
Network
~910 ~910
Server Server

FIG. 9

US 9,485,317 B2

1
METHOD AND SYSTEM FOR MONITORING
EXECUTION OF USER REQUEST IN
DISTRIBUTED SYSTEM

CROSS REFERENCE TO OTHER
APPLICATIONS

This application claims priority to People’s Republic of
China Patent Application No. 201210342909.6 entitled A
METHOD AND DEVICE FOR MONITORING THE RUN-
NING OF USER REQUESTS IN DISTRIBUTED SYS-
TEMS, filed Sep. 14, 2012 which is incorporated herein by
reference for all purposes.

FIELD OF THE INVENTION

The present application relates to a method and a system
for monitoring execution of a user request in a distributed
system.

BACKGROUND OF THE INVENTION

In large distributed systems, user application service
requests often pass through many service modules before
being executed. For example, in Alibaba’s cloud computing
platform, a single operation request by a user passes through
scheduling, communications, indexing, distributed storage,
and other service modules before the completion of many
operations such as updating the index buffer, maintaining
meta-information, writing files, and writing access logs.
These service modules typically are deployed on different
processes on hundreds of servers and are constructed from
different software programs.

Currently, monitoring and analyzing user-invoked distrib-
uted system behaviors are often concentrated on a single
service component of a distributed system, such as, for
example, monitoring, reading, and writing of a file system or
monitoring the throughput of an upper-level system. Such a
monitoring approach only analyzes a single service module
and is unable to accurately obtain an effect of a user’s
application service request on the overall distributed system.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the
following detailed description and the accompanying draw-
ings.

FIG. 1 is a flow diagram of an embodiment of a process
for monitoring execution of a user request.

FIG. 2 is an example of an outputted log.

FIG. 3 is a flow diagram of an embodiment of a process
for collecting a log.

FIG. 4 is an example of an analysis of a log.

FIG. 5 is a detailed example of the analysis of the log.

FIG. 6 is an example of compiling statistics based on logs.

FIG. 7 is an example of a user request distribution.

FIG. 8 is a structural diagram of an embodiment of a
system for monitoring execution of a user request.

FIG. 9 is a schematic diagram of an embodiment of a
system for monitoring execution of a user request.

DETAILED DESCRIPTION

The invention can be implemented in numerous ways,
including as a process; an apparatus; a system; a composi-
tion of matter; a computer program product embodied on a
computer readable storage medium; and/or a processor, such

10

15

20

25

30

35

40

45

50

55

60

65

2

as a processor configured to execute instructions stored on
and/or provided by a memory coupled to the processor. In
this specification, these implementations, or any other form
that the invention may take, may be referred to as tech-
niques. In general, the order of the steps of disclosed
processes may be altered within the scope of the invention.
Unless stated otherwise, a component such as a processor or
a memory described as being configured to perform a task
may be implemented as a general component that is tem-
porarily configured to perform the task at a given time or a
specific component that is manufactured to perform the task.
As used herein, the term ‘processor’ refers to one or more
devices, circuits, and/or processing cores configured to
process data, such as computer program instructions.

A detailed description of one or more embodiments of the
invention is provided below along with accompanying fig-
ures that illustrate the principles of the invention. The
invention is described in connection with such embodi-
ments, but the invention is not limited to any embodiment.
The scope of the invention is limited only by the claims and
the invention encompasses numerous alternatives, modifi-
cations and equivalents. Numerous specific details are set
forth in the following description in order to provide a
thorough understanding of the invention. These details are
provided for the purpose of example and the invention may
be practiced according to the claims without some or all of
these specific details. For the purpose of clarity, technical
material that is known in the technical fields related to the
invention has not been described in detail so that the
invention is not unnecessarily obscured.

FIG. 1 is a flow diagram of an embodiment of a process
for monitoring execution of a user request. In some embodi-
ments, the process 100 is implemented by a server 910 of
FIG. 9 and includes:

In 110, the server samples user requests received by a
plurality of servers in a distributed system.

In 120, the server generates identifiers corresponding to
the user requests sampled by the plurality of servers. In some
embodiments, the identifiers are sent as variables to a current
thread when the user requests invoke threads. In some
embodiments, each thread has local storage having a storage
interface for reading and writing data. In some embodi-
ments, the variables are stored in the storage interfaces.

In 130, the server injects tracking interfaces in advance
into processes executed by the plurality of servers in the
distributed system.

An example of the tracking interface below illustrates two
concepts: the tracking interface and how to switch on and off
the tracking interface.

FunctionB() {
TRACE_LOG (FunctionB, ("Message”, “exception throw”)
(“User”,100240™));
¥

In the above example, the code for the tracking interface
is manually injected. The switching of the tracking interface
is not determined by the tracking interface. Instead, the
switching is based on whether the current identifier is set to
0 or not.

In 140, the server determines whether a currently execut-
ing process (current process) contains an identifier corre-
sponding to a user request when the process executed
includes an injected tracking interface.

In 150, in the event that the current process containing the
identifier corresponding to the user request, the server

US 9,485,317 B2

3

records information corresponding to the identifier relating
to the function indicated by the tracking interface and
generates a log.

In 160, the server individually collects the generated log
based on the corresponding identifier.

In order to decrease a disturbance effect of monitoring a
distributed system performance and to ensure that the moni-
toring system does not consume too heavy a load, the user
requests received by the plurality of servers in the distrib-
uted system generally undergo random sampling according
to a ratio of 1% to 5%. The sampled user requests are
collectively tracked in invoked individual threads, with
corresponding logs generated.

As an example, the tracking of the sampled user requests
is based on the identifiers corresponding to the user requests.
Furthermore, when the identifiers corresponding to the user
requests sampled by the plurality of servers are generated,
the server ensures that the generated identifiers are unique
within the distributed system. For example, identifiers that
uniquely correspond to user requests are generated accord-
ing to a set algorithm. In some embodiments, the algorithm
generates the identifiers based on sampled user request send
times and markers of request-receiving servers for the user
requests sampled by the plurality of receiving servers. There
are no limitations imposed on the algorithm for generating
the identifiers.

To ensure that the sampled user requests are effectively
detected in processes executed by the plurality of servers,
the identifiers corresponding to the user requests are sent as
variables to the threads currently invoked by the user
requests. In some embodiments, when user requests in the
same process invoke different threads, the identifiers are
retained in the thread local storage (TLS). When a process
creates sub-processes, the server sends identifiers to the
sub-processes. When a user request spans processes and
invokes different threads, an identifier is sent via a commu-
nication protocol to all the processes. The following is an
example of a communication protocol:

[Header]

TracerID: 1001234311111 (Identifier)
[Body]

[Original transmitted content]

In some embodiments, when a network module sends a
network request, an identifier is obtained from the thread,
placed in the header of the network request, and sent to a
receiving terminal. The receiving terminal extracts the iden-
tifier from the received network request and sends the
identifier to the thread that is currently processing the
network request.

In some embodiments, for each server in the distributed
system, the server injects tracking interfaces, in advance, in
processes to be monitored. For example, a tracking interface
corresponds to a TRACE_LOG interface in Windows™
operating system.

For example, when a function is executed, the server
determines whether the identifier is 0. If the identifier is not
0, the server outputs the content and value of the identifier
of the current TRACE_LOG to the log.

The tracking interface explicitly adds, at the injection
point, descriptive information related to the type of injection
point. In some embodiments, all of the tracking interfaces
adopt Resource Acquisition Is Initialization (RAII) pro-
gramming specifications. In other words, the tracking inter-
faces complete system resource releases and requests. In

10

15

30

35

40

45

50

55

60

65

4

some embodiments, through the tracking interfaces, time-
stamps for user request injection point entries and exits are
individually recorded by constructor and destructor func-
tions and incorporated into logs.

In some embodiments, injection probe tracking is imple-
mented through the code below:

FunctionB(){
TRACE_LOG(FunctionB);

FunctionC(){
TRACE_LOG(FunctionC);

FunctionA()}{
TRACE_LOG(FunctionA);
FunctionB();

FunctionC();

)

Main(...){
ENABLE_TRACE();
FunctionA();

Thus, whenever a program of the plurality of servers in
the distributed system reaches a TRACE_LOG interface, the
program determines whether a currently executing process
contains an identifier corresponding to the user request.

An example, the identifier is used by the thread function
when the function is invoked. If the value of the identifier
corresponds to 0 (meaning the request was not sampled),
nothing is output. If the value of the identifier is not equal
to 0 (the request has been sampled), the value of the
identifier and log contents are output to the log to be
processed.

In the event that the program determines that the currently
executing process contains the identifier corresponding to
the user request, the server acquires the identifier from the
thread. The server records information relating to the func-
tion indicated by the tracking interface. For example, the
identifier and the information including the name and loca-
tion of the invoked function, the time when the function was
invoked, error information generated at the time when the
function was invoked are output to the log, or any combi-
nation thereof.

FIG. 2 is an example of an outputted log. In the outputted
log, “TRACE_ID_:001” indicates that the identifier is for
request 001, “_FUNC_:FunctionA_start” indicates a start
time of “FunctionA,” “ FUNC_:FunctionA_end” indicates
an end time of “FunctionA,” and “/Example.cpp:117” is
supplemental information indicating that the log is located
on line 117 of “Example.cpp.”

In the event that the program determines that the currently
executing process does not contains an identifier corre-
sponding to the user request, the server does not execute any
operation. In other words, in the event that no identifier has
been set up or the identifier is O, the identifier indicates that
the user request that invoked the process is not being tracked
or monitored.

In some embodiments, in 160, after generating logs for all
of the servers in the distributed system, the server, via a
background collection procedure, collects logs at regular
intervals at processing servers and inter-relates the collected
logs. In other words, the collecting operation is implemented
according to different identifiers. For example, logs with the
same identifier are collected as the same type.

US 9,485,317 B2

5

FIG. 3 is a flow diagram of an embodiment of a process
for collecting a log. In some embodiments, the process 300
is an implementation of 160 of FIG. 1 and comprises:

In 310, the server individually classifies the collected logs
based on the different identifiers.

In 320, the server individually classifies logs having the
same identifier based on different processes.

In 330, the server individually merges logs having the
same identifier and the same process based on function and
beginning and end times.

In 340, the server combines process-spanning logs having
the same identifier based on time sequence.

In 350, after the logs are collected, the server analyzes the
collected logs based on specific needs and outputs the
analysis results. For example, the server analyzes the col-
lected logs to combine different identifiers and thus to form
raw data for analysis. In some embodiments, visualized/
analytic frameworks are used to interpret program execution
modes to enable convenient analysis of how user requests
are executed in programs.

In some embodiments, one or more of the following
analyses of the logs is performed:

1. The server performs different-path analysis on user
requests having the same form of invocation. In some
embodiments, in the distributed system, the same form of
invocation gives rise to different behaviors because of
different system statuses. For example, the distributed sys-
tem has the same two kinds of responses regarding whether
a cache is hit. By counting different invocation behaviors for
the same processing mode, analyzing the true processing
status of the distributed system is possible. FIG. 4 is an
example of an analysis of a log. For example, regarding the
processing of the same MailBox::GetMail, two different
behaviors (A and B), which account for 99.77% and 0.22%
of the total, respectively, exist. FIG. 5 is a detailed example
of'the analysis of the log. The detailed analysis illustrates the
difference between behavior A and behavior B. As an
example, 502 left side of FIG. 5 illustrates behavior A and
504 right side of FIG. 5 illustrates behavior B.

2. The server performs an analysis of user request run
paths in the distributed system and of run times. FIG. 6 is an
example of compiling statistics based on logs. Compiling
statistics on user request invocation data and of the time
expended running the user request in processes of the
plurality of servers based on the collected user request logs
is possible.

3. The server invokes a frequency analysis of all of the
modules in the distributed system. In addition to allowing
examination of the mean and maximum values of each user
request frequency in each module, the analysis also enables
one to examine the distribution of program invocation
statuses based on different dimensions, i.e., in terms of time,
identifiers, and equipment. FIG. 7 is an example of a user
request distribution.

Furthermore, a system for monitoring a user request
executed in a distributed system corresponding to the
method is provided. The principles according to which this
system performs are similar to the above method for moni-
toring the user request executed in the distributed system.
Therefore, in implementing the system, the implementation
of the method can be referenced. Repeated sections are not
discussed further for conciseness.

FIG. 8 is a structural diagram of an embodiment of a
system for monitoring execution of a user request. In some
embodiments, the system 800 includes a sampling module
810, an identifier generating module 820, a tracking inter-

10

15

20

25

30

35

40

45

50

55

60

65

6

face-injecting module 830, a determining module 840, gen-
erating module 850, a log collecting module 860, and a log
analysis module 870.

The sampling module 810 samples user requests received
by a plurality of servers in a distributed system.

The identifier generating module 820 generates identifiers
corresponding to the user requests sampled by the various
servers. In some embodiments, the identifiers are sent as
variables to a current thread in the event that the user
requests invoke threads.

The tracking interface-injecting module 830 injects track-
ing interfaces in advance into processes executed by the
various servers in the distributed system.

The determining module 840 determines whether a cur-
rent process contains an identifier corresponding to a user
request when the process executed includes an injected
tracking interface.

In the event that the current process is detected as con-
taining the identifier corresponding to the user request when
the process executed includes the tracking interface, the
generating module 850 records information corresponding
to the identifier relating to the function indicated by the
tracking interface and generates a log.

The log collecting module 860 individually collects the
generated logs based on the corresponding identifiers.

The log analysis module 870 analyzes the collected logs
and outputs the analysis results. As an example, the analysis
includes one or more of the following methods: 1) perform-
ing different-path analysis on user requests having the same
form of invocation; 2) performing analysis of user request
run paths in a distributed system and of run times in the
various modules; and 3) invoking frequency analysis of the
various modules in the distributed system.

FIG. 9 is a schematic diagram of an embodiment of a
system for monitoring execution of a user request. The
system 900 includes a plurality of servers 910 and a client
920. A server 910 is connected to the client 920 over a
network 930.

For example, the client 920 sends a user request via the
network 930 to one of the servers 910 in the system 900.

A method and system for monitoring user requests
executed in a distributed system are provided. When a user
accesses a distributed system, the user request received by
the distributed system is sampled, and an identifier corre-
sponding to the sampled user request is generated. The
identifier is sent to each thread invoked by the user request.
Tracking interfaces are inserted into processes executed by
a plurality of servers of the distributed system. In the event
that the current process is detected as containing the iden-
tifier corresponding to the user request when each of such
processes reaches the tracking interface, information corre-
sponding to the identifier relating to the function indicated
by the tracking interface is recorded, and a log is generated.
Subsequently, the generated logs are individually collected
based on their corresponding identifiers. Because the user
requests are sample-monitored using a sampling method
during monitoring of user requests, the impact on system
performance is low. Thus, the monitoring system is not
subject to excessive strain. Moreover, the logs that are
generated by the plurality of servers in monitoring the
distributed system are collected in real time based on the
identifiers of the user requests, allowing for possible support
for real-time analysis of user request behavior.

The units described above can be implemented as soft-
ware components executing on one or more general purpose
processors, as hardware such as programmable logic devices
and/or Application Specific Integrated Circuits designed to

US 9,485,317 B2

7

perform certain functions or a combination thereof. In some
embodiments, the units can be embodied by a form of
software products which can be stored in a nonvolatile
storage medium (such as optical disk, flash storage device,
mobile hard disk, etc.), including a number of instructions
for making a computer device (such as personal computers,
servers, network equipment, etc.) implement the methods
described in the embodiments of the present invention. The
units may be implemented on a single device or distributed
across multiple devices. The functions of the units may be
merged into one another or further split into multiple sub-
units.

The methods or algorithmic steps described in light of the
embodiments disclosed herein can be implemented using
hardware, processor-executed software modules, or combi-
nations of both. Software modules can be installed in
random-access memory (RAM), memory, read-only
memory (ROM), electrically programmable ROM, electri-
cally erasable programmable ROM, registers, hard drives,
removable disks, CD-ROM, or any other forms of storage
media known in the technical field.

Although the foregoing embodiments have been
described in some detail for purposes of clarity of under-
standing, the invention is not limited to the details provided.
There are many alternative ways of implementing the inven-
tion. The disclosed embodiments are illustrative and not
restrictive.

What is claimed is:

1. A method of monitoring execution of user requests in
a distributed system, comprising:

sampling a first user request received by a plurality of

servers in a distributed system;

generating an identifier corresponding to the first user

request sampled by the plurality of servers, the identi-

fier being sent as a variable to a current thread that is

invoked by the first user request, and wherein:

in the event that a first process relating to the first user
request is the same as a second process relating to a
second user request, a different thread is invoked
from a thread invoked by the second user request,
and the identifier is retained in a thread variable
relating to the different thread;

in the event that the first process has created a plurality
of sub-processes, the identifier is sent to the plurality
of sub-processes; and

in the event that the first user request spans a plurality
of processes and invokes one or more different
threads different from the current thread, the identi-
fier is sent via a communication protocol to the
plurality of processes;

injecting tracking interfaces in advance into processes

executed by the plurality of servers in the distributed
system; and

determining whether the current process contains the

identifier corresponding to the first user request.

2. The method as described in claim 1, wherein the
sampling of the first user request received by the plurality of
servers in the distributed system includes:

conducting a random sampling of the first user request

received by the plurality of the servers in the distributed
system based on a ratio of 1% to 5%.

3. The method as described in claim 1, wherein the
generating of the identifier corresponding to the first user
request sampled by the plurality of servers includes:

generating the uniquely corresponding identifier based on

a user request send time and a marker of the request-

5

15

20

25

40

45

50

60

65

8

receiving server for the first user request sampled by
the plurality of receiving servers.

4. The method as described in claim 1, wherein the
recording of the information corresponding to the identifier
relating to the function indicated by the tracking interface
and the generating of the log includes:

outputting the identifier, a name and location of the

invoked function, a time when the function was
invoked, error information generated at a time of
invoking to the log, or any combination thereof.

5. The method as described in claim 1, wherein the
individually collecting of the generated log according to the
corresponding identifier includes:

individually classifying received logs according to differ-

ent identifiers;

individually classifying logs that have the same identifier

according to different processes;
individually merging logs that have the same identifier
and the same process according to the function and
according to invoking beginning and end times; and

combining process-spanning logs that have the same
identifier according to the time sequence.

6. The method as described in claim 1, further comprising:
after the individually collecting of the generated log, ana-
lyzing the collected log and outputting an analysis result.

7. The method as described in claim 6, wherein the
analyzing of the collected log comprises:

performing different-path analysis on a third user request

having the same form of invocation;

analyzing a user request run path in the distributed system

and a run time in a module;

invoking frequency analysis in the module in the distrib-

uted system; or

any combination thereof.

8. A system for monitoring execution of user requests on
a distributed system, comprising: at least one processor
configured to:

sample a first user request received by a plurality of

servers in a distributed system;

generate an identifier corresponding to the first user

request sampled by the plurality of servers, the identi-

fier being sent as a variable to a current thread that is

invoked by the first user request, and wherein:

in the event that a first process relating to the first user
request is the same as a second process relating to a
second user request, a different thread is invoked
from a thread invoked by the second user request,
and the identifier is retained in a thread variable
relating to the different thread;

in the event that the first process has created a plurality
of sub-processes, the identifier is sent to the plurality
of sub-processes; and

in the event that the first user request spans a plurality
of processes and invokes one or more different
threads different from the current thread, the identi-
fier is sent via a communication protocol to the
plurality of processes;

inject tracking interfaces in advance into processes

executed by the plurality of servers in the distributed
system; and

determine whether the current process contains the iden-

tifier corresponding to the first user request; and

a memory coupled to the at least one processor and

configured to provide the at least one processor with
instructions.

US 9,485,317 B2

9

9. The system as described in claim 8, wherein the at least
one processor further configured to:

after the collecting of the generated log:

perform different-path analysis on a third user request
having the same form of invocation;

analyze a user request run path in the distributed system
and run time in a module;

invoke frequency analysis in the module in the distrib-
uted system; or

any combination thereof.

10. A computer program product for monitoring execution
of user requests on a distributed system, the computer
program product being embodied in a tangible non-transi-
tory computer readable storage medium and comprising
computer instructions for:

sampling a first user request received by a plurality of

servers in a distributed system;

generating an identifier corresponding to the first user

request sampled by the plurality of servers, the identi-
fier being sent as a variable to a current thread that is
invoked by the first user request, and wherein:

10

15

10

in the event that a first process relating to the first user
request is the same as a second process relating to a
second user request, a different thread is invoked
from a thread invoked by the second user request,
and the identifier is retained in a thread variable
relating to the different thread;
in the event that the first process has created a plurality
of sub-processes, the identifier is sent to the plurality
of sub-processes; and
in the event that the first user request spans a plurality
of processes and invokes one or more different
threads different from the current thread, the identi-
fier is sent via a communication protocol to the
plurality of processes;
injecting tracking interfaces in advance into processes
executed by the plurality of servers in the distributed
system; and
determining whether the current process contains the
identifier corresponding to the first user request.

#* #* #* #* #*

